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The dynamics of the deformations of a moving contact line is studied assuming two different dissipation
mechanisms. It is shown that the characteristic relaxation time for a deformation of wavelength 2p/uku of a
contact line moving with velocityv is given ast21(k)5c(v)uku. The velocity dependence ofc(v) is shown
to depend drastically on the dissipation mechanism: we findc(v)5c(v50)22v for the case in which the
dynamics is governed by microscopic jumps of single molecules at the tip~Blake mechanism!, and c(v)
.c(v50)24v when viscous hydrodynamic losses inside the moving liquid wedge dominate~de Gennes
mechanism!. We thus suggest that the debated dominant dissipation mechanism can be experimentally deter-
mined using relaxation measurements similar to the Ondarcuhu-Veyssie experiment@T. Ondarcuhu and M.
Veyssie, Nature352, 418 ~1991!#.
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I. INTRODUCTION

Spreading of a liquid on a solid surface usually involve
rather complex dynamical behavior, which is determined
a subtle competition between the mutual interfacial ener
ics of the coexisting phases~the solid, the liquid, and the
corresponding equilibrium vapor!, dissipation processes, an
geometrical or chemical irregularities of the solid surface@1#.
Interestingly, this dynamics can be effectively studied
terms of the dynamics of thecontact line, which is the com-
mon borderline between the three phases, by correctly ta
into account the physical processes in the vicinity of it.

One of the key issues about this dynamics that has
mained a subject of controversy is dissipation. There are
rival theories in the literature, each depicting a differe
physical picture for the dominant dissipation mechanism
the dynamics of partial wetting@2#. The first approach, which
is based on the idea of Yarnold and Mason@3# and was later
developed into a quantitative theory by Blake and c
workers @4#, emphasizes the role of microscopic jumps
single molecules~from the liquid into the vapor! in the im-
mediate vicinity of the contact line. The other approa
which was developed by de Gennes and co-workers@1,5#,
asserts that for small values of contact angle the dissipa
is dominated by viscous hydrodynamic losses inside
moving liquid wedge.

For a partially wetting fluid on sufficiently smooth sub
strates, a contact line at equilibrium has a well-defined c
tact angleue that is determined by the solid-vaporgSV and
the solid-liquidgSL interfacial energies, and the liquid su
face tension g through Young’s relation: gSV2gSL
5g cosue. For a moving contact line, however, the value
the so-called dynamic contact angleud changes as a functio
of velocity: ud.ue for an advancing contact line andud
,ue for a receding one. Since the discrepancy between
two dissipation mechanisms appears for small contact an
@2#, one can expect that receding contact lines are in fact v
good candidates for experimental determination of the do
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nant mechanism in this regime.
A classic example of this corresponds to wetting of a pl

that is vertically withdrawn from a liquid at a constant v
locity 2v, which was first studied by Landau and Levich f
complete wetting@6#. In the case of partial wetting that wa
studied by de Gennes@5,7#, a steady state is achieved
which the liquid will partially wet the plate with a nonvan
ishing dynamic contact angleud(v) only for pull-out veloci-
ties less than a certain critical valuevc . The dynamic contact
angle decreases with increasingv, until at the critical veloc-
ity the system undergoes a dynamical phase transition
which a macroscopic Landau-Levich liquid film, formall
corresponding to a vanishingud , will remain on the plate.

Since the onset of leaving a film occurs at small values
contact angle, one can imagine that the two different dis
pation mechanisms would lead to conflicting predictio
about the transition. In particular, in Blake’s picture the ‘‘o
der parameter’’ for the transitionud would vanish continu-
ously as v approachesvc , which makes it look like a
second-order phase transition. On the contrary, de Gen
predicts a jump in the order parameter fromue /A3 to zero at
the transition, which is the signature of a first-order pha
transition@2,5#. This drastic difference in the predictions o
the two theories can provide a reliable venue for test
them. However, such experiments have so far proven to
inconclusive due to the usual difficulties of tuning into
critical point in the presence of disorder@8#.

Another notable feature of contact lines is their anom
lous elasticity as noticed by Joanny and de Gennes@9#. For
length scales below the capillary length~which is of the or-
der of 3 mm for water at room temperature!, a contact line
deformation of wave vectork, denoted ash(k) in Fourier
space, will distort the surface of the liquid over a distan
uku21. Assuming that the surface deforms instantaneously
response to the contact line, the elastic energy cost for
deformation can be calculated from the surface tension
ergy stored in the distorted area, and is thus proportiona
uku, namely@9#
©2001 The American Physical Society01-1
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2

2 E dk

2p
ukuuh~k!u2. ~1!

The anomalous elasticity leads to interesting equilibri
dynamics, corresponding to when the contact line is p
turbed from its static position, as studied by de Gennes@10#.
BalancingdEcl /dt and the dissipation, which he assumes
small contact angles is dominated by the hydrodynamic
sipation in the liquid nearby the contact line, he finds th
each deformation mode relaxes to equilibrium with a ch
acteristic inverse decay timet21(k)5c0uku, in which c0

5gue
3/(3hl ), whereh is the viscosity of the liquid andl is

a logarithmic factor of order unity@10#. The relaxation is
thus characterized by a linear dispersion relation, which
plies that a deformation in the contact line will decay a
propagate at a constant velocityc0, as opposed to system
with normal line tension elasticity, where the decay and
propagation are governed by diffusion. This behavior h
been observed, and the linear dispersion relation has b
precisely tested, in a very interesting experiment by Ond
cuhu and Veyssie@11#.

Here we study the dynamics of the deformations o
moving contact line for the two different dissipation mech
nisms. In particular, we focus on the sizeable regime wh
the contact line is moving, i.e., it is away from the depinni
transition@12#, but still not too close to the onset of leavin
a film. We show that in this regime, the characteristic rel
ation time for ak-mode deformation is given ast21(k)
5c(v)uku. The velocity dependence ofc(v) is shown to de-
pend drastically on the dissipation mechanism: we fi
c(v)5c(v50)22v in Blake’s scheme, whereas in d
Gennes’ picturec(v) might be rather well represented b
c(v).c(v50)24v. We thus suggest that monitoring th
deformation dynamics in this regime, along the lines of
Ondarcuhu-Veyssie experiment@11#, can provide a more
practical probe for the experimental determination of the
bated dominant dissipation mechanism.

The rest of the paper is organized as follows. In Sec.
we discuss the two different dissipation mechanisms and
rive expressions for the corresponding energy dissipa
rates. These expressions are then used in Sec. III to de
the force balance, and thus the governing dynamical eq
tion. The velocity dependence of the dynamic contact an
and a characteristic velocity are studied in Secs. IV and
correspondingly. While Sec. VI discusses the effects of s
face disorder, we conclude with some discussions in S
VII.

II. DISSIPATION

Let us assume that the contact line is directed on ave
along thex axis, and is moving in they direction with an
average velocityv, which we assume to be positive corr
sponding to receding contact lines, as in Fig. 1. We can
scribe the position of the contact line along they axis for any
given x and t with the functiony(x,t)5vt1h(x,t). We fur-
ther assume that the deformationh(x,t) is only a relatively
small perturbation. We can now try to evaluate the ove
03160
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dissipation for the deforming contact line within the two d
ferent scenarios.

A. Blake approach

The physical process that is involved in causing dissi
tion in Blake’s picture, i.e., molecular jumps near the cont
line, is local in nature@4#. Therefore, in any small neighbor
hood the amount of dissipation is completely determined
the local value of the contact line velocity, while all th
molecular details of the dissipation is encoded in an effec
friction coefficientm21. The overall dissipation can then b
written as

Pl5
1

2mE dx@v1] th~x,t !#2. ~2!

In the limit of relatively small contact angles, which is re
evant for our receding contact lines, the inverse friction c
efficient ~or mobility! can be calculated as@2#

m5
kl3

kBT
expS 2

W

kBTD , ~3!

in which W is an activation energy for molecular hopping,l
is the distance between hopping sites,k is a characteristic
‘‘attempt’’ rate, andkBT is the thermal energy.

B. de Gennes approach

We now focus on the contribution of dissipation th
comes from the viscous losses in the hydrodynamic flo
inside the liquid wedge@1,5#. For a slightly deformed contac
line, we assume that the dissipation can be approximate
the sum of contributions from wedge-shaped slices with
cal contact anglesu(x,t), as shown in Fig. 1. This is a rea
sonable approximation because most of the dissipatio
taking place in the singular flows near the tip of the wed
@1,5,10#. Using the result for the dissipation in a perfe
wedge, which is based on the lubrication approximat
@1,13#, we can calculate the total dissipation as@10#

FIG. 1. The schematics of the system.
1-2
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Ph5
h

2E dxS 3l

u~x,t ! D @v1] th~x,t !#2, ~4!

in which l 5 ln(dmax/dmin) with dmax given by the size of the
liquid drop anddmin being a microscopic length scale. Th
inverse dependence onu suggests that for sufficiently sma
contact angles the hydrodynamic loss is to be dominant@2#.

III. FORCE BALANCE AND DYNAMICAL EQUATION

To find the governing dynamical equation in the long-tim
limit, we should balance the total friction force obtained
d(Pl1Ph)/d] th(x,t) with the interfacial forceg cosu(x,t)
2(gSV2gSL)5g@cosu(x,t)2cosue# at each point along the
contact line. Note that in this section, we are taking b
dissipation mechanisms into account. In the limit of sm
contact angles, we find

F 1

m
1

3hl

u~x,t !G@v1] th~x,t !#5
g

2
@ue

22u~x,t !2#. ~5!

To proceed from here, we need to relate the contact a
u(x,t) to the contact line profileh(x,t), which can be done
through solving for the surface profile of the liquid drop. O
can show that the surface profilez(x,y) near the contact line
can be found as a solution of the Laplace equation]x

2

1]y
2)z(x,y)50, so as to minimize the surface area. The

lution that satisfies the boundary conditionz„x,h(x,t)…50
reads@9#

z~x,y!5udFy2E dk

2p
h~k,t !eikx2ukuyG , ~6!

from which we obtain

u~x,t ![
]z~x,y!

]y
uy5h(x,t)5udF11E dk

2p
ukuh~k,t !eikxG ,

~7!

to the leading order@9#.
To the zeroth order, Eq.~5! gives the relation between th

average dynamic contact angle and the velocity as

v5S g

6hl
D ud~ue

22ud
2!

11ud /~3hml !
. ~8!

This relation will be used below to study the onset of t
transition of the moving liquid drop to a Landau-Levich film

The dynamical equation@Eq. ~5!#, which governs the dy-
namics of the deformation field, can now be written in t
linear approximation as

] th~k,t !52c~v !ukuh~k,t ! ~9!

in Fourier space, where

c~v !5
mgud

3~v !23hml v

3hml 1ud~v !
, ~10!
03160
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with ud(v) to be found by inverting Eq.~8!. The correspond-
ing form of the dynamical equation in real space can
found by Fourier transformation as

] th~x,t !52c~v !E dx8

p

h~x8,t !

~x2x8!2
, ~11!

which reflects the nonlocality of the dynamics.
Relaxation of the contact line’s shape while it is movin

thus takes place with the same dispersion relationt21(k)
;uku as a contact line at rest, although the correspond
characteristic velocity c(v) shows a strong dependence o
the contact line velocityv.

IV. CONTACT-ANGLE –VELOCITY RELATION

There can be two types of experiments on a moving c
tact line depending on how we prepare it. We can fix a va
for the contact angle that is different fromue , and let it
move with an adjusted velocity when it reaches a ste
state. This can be achieved, for example, by adding or
moving some volume of liquid through a syringe that is i
serted in a liquid drop at equilibrium. On the contrary, w
can fix the velocity and let the contact angle adjust itself i
steady state. This will be the case, for example, when a p
is withdrawn vertically from a liquid at a constant velocity

Depending on which ‘‘ensemble’’ we are using, we w
have a fixed value forv or ud , and we should then use Eq
~8! ~that relates the velocity and the dynamic contact ang!
to determine the conjugate parameter. The term ‘‘ensemb
is in fact quite appropriate to use here because the two~me-
chanically! conjugate quantities are, in fact, velocity an
force, which is determined solely by the contact angle. W
we have is then either a ‘‘constant velocity’’ or a ‘‘consta
force’’ experiment. It is interesting to note that in nonequ
librium systems, in general, different ensembles may
necessarily lead to the same result@14#.

In this work, we are mostly interested in constant veloc
experiments, and thus we will treatv as a fixed and given
parameter below unless otherwise specified. We will exa
ine Eq. ~8! in the limiting cases corresponding to the tw
different dissipation mechanisms and compare their pre
tions.

A. Blake approach

The behavior in this regime can be extracted from Eq.~8!
by taking the limitmh!ud . Inverting the resulting equation
yields

ud~v !

ue
U

l

5A12
2v
cl0

, ~12!

in which cl05mgue
2 . Note that this holds only forv,cl0/2,

while ud50 identically forv.cl0/2. This function is plotted
in Fig. 2.

As can be readily seen from Fig. 2, increasingv would
lead to decreasing values ofud until at a critical velocity
v lc5cl0/2 it finally vanishes continuously. A vanishing con
1-3
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tact angle presumably corresponds to formation of a liq
film, a so-called Landau-Levich film. The value of the d
namic contact angleud serves as the order parameter for th
dynamical phase transition, whilev is the tuning parameter
The continuous vanishing of the order parameter causes
phase transition to be classified as second order. As in
general theory of critical phenomena, a mean-field expon
b5 1

2 is characterizing the vanishing of the order parame
in terms of the tuning parameter.

B. de Gennes approach

In the opposite limit ofmh@ud , only the hydrodynamic
contribution survives, and Eq.~8! leads to

ud~v !

ue
uh5

1

A3
@~2n2 iA12n2!1/31~2n1 iA12n2!1/3#,

~13!

in which n53A3v/ch0 andch05gue
3/(3hl ).1

The above formula, which holds only forv,ch0 /(3A3),
has two branches and only the one that recoversud(0)5ue is
acceptable as plotted in Fig. 3. While atv5ch0 /(3A3) we
find ud5ue /A3, we expect to haveud50 for higher veloci-
ties v.ch0 /(3A3). Therefore, the order parameterud expe-
riences a finite jump at the transition velocityvhc

5ch0 /(3A3), which is the hallmark of a first-order phas
transition.

V. CHARACTERISTIC VELOCITY

Using Eq.~10! andud(v) that we have found in the pre
ceding section for the two different cases, we can extract
v dependence of the characteristic velocity.

A. Blake approach

We can simplify Eq.~10! by taking the limitmh!ud , as

cl~u!5cl0

ud
2

ue
2 . ~14!

1Note that the expression in Eq.~13! is real, and thei is retained
only to keep the appearance of the formula simpler.

FIG. 2. The reduced order parameterTl5(ud /ue) l as a function
of the dimensionless velocityVl5v/cl0 for Blake mechanism@Eq.
~12!#. The dynamical phase transition atVlc51/2 is predicted to be
of second order in this picture.
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Inserting the form ofud(v) from Eq. ~12! yields

cl~v !5cl022v. ~15!

Note that in this approachc(v) is strictly linear inv all the
way, and it vanishes at the transition point, as plotted in F
4.

B. de Gennes approach

In the opposite limit ofmh@ud , Eq. ~10! will be simpli-
fied as

ch~u!5
ch0

2 S 3
ud

3

ue
3 2

ud

ue
D . ~16!

Putting inud(v) from Eq. ~13! leads to

ch~v !5
ch0

A3
@~2n2 iA12n2!1/31~2n1 iA12n2!1/32n#.

~17!

One can again check from this equation thatc(v) vanishes at
the transition. The above equation is plotted in Fig. 5.

The characteristic velocity can be well approximated
the linear expression

FIG. 3. The reduced order parameterTh5(ud /ue)h as a func-
tion of the dimensionless velocityVh5v/ch0 for the de Gennes
mechanism@Eq. ~13!#. The dynamical phase transition atVhc

51/(3A3).0.192 is predicted to be of first order in this picture

FIG. 4. The reduced characteristic velocityCl5cl /cl0 as a func-
tion of the dimensionless velocityVl5v/cl0 for Blake mechanism
@Eq. ~15!#. The slope of the curve is22 all the way to the transition
point where the characteristic velocity vanishes.
1-4
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ch~v !.ch024v ~18!

for a wide range ofv, except very nearch0 /(3A3), where it
experiences a square-root singular behavior as

ch~v !.ch0FA2S 1

3A3
2

v
ch0

D 1/2

13S 1

3A3
2

v
ch0

D
1OS S 1

3A3
2

v
ch0

D 3/2D G . ~19!

It is interesting to note that although both approaches pre
a sizeable linear regime forc(v), as manifest in Eqs.~15!
and ~18!, the corresponding slopes are predicted differen

VI. SURFACE DISORDER

In most practical cases, the dynamics of a contact lin
affected by the defects and heterogeneities in the substra
addition to dissipation and elasticity that we have conside
so far. If the interfacial energiesgSV and gSL are space-
dependent with the corresponding averages beingḡSV and
ḡSL , a displacementdy(x,t) of the contact line is going to
lead to a change in energy as

dEd5E dx g„x,vt1h~x,t !…dy~x,t !, ~20!

where

g~x,y!5gSV~x,y!2gSL~x,y!2~ ḡSV2ḡSL!. ~21!

Incorporating this contribution in the force balance leads
an extra force termg(x,vt) on the right-hand side of Eq.~5!,
and thus a noise term on the right-hand side of Eq.~11! of
the form

h~x,t !5S mud

ud13hml
Dg~x,vt !, ~22!

FIG. 5. The reduced characteristic velocityCh5ch /ch0 as a
function of the dimensionless velocityVh5v/ch0 for the de Gennes
mechanism@Eq. ~17!#. The slope of the curve is nearly24 until a
square-root singularity sets in near the transition point where
characteristic velocity vanishes.
03160
ct
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d
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to the leading order. Note that this is a good approximat
provided we are well away from the depinning transitio
and the contact line is moving fast enough@1,9,12,16#.

Assuming that the surface disorder has short-range co
lations with a Gaussian distribution described by

^g~x,y!&50,

^g~x,y!g~x8,y8!&5g2a2d~x2x8!d~y2y8!, ~23!

we can deduce the distribution of the noise as

^h~x,t !&50,

^h~x,t !h~x8,t8!&52D~v !d~x2x8!d~ t2t8!, ~24!

where

D~v !5
g2a2

2v S mud~v !

ud~v !13hml
D 2

. ~25!

In the presence of the noise, the contact line undergoes
namical fluctuations. These fluctuations can best be cha
terized by the width of the contact line, which is defined

W2~L,t ![
1

LE dx^h~x,t !2&. ~26!

Using Eq.~9! with the noise term, we can calculate the wid
of the contact line as

W2~L,t !5
D~v !

pc~v !
E

p/L

p/adk

k
@12e22c(v)ukut#

5
D~v !

pc~v ! H ln@c~v !t/a#,
a

c~v !
!t!

L

c~v !
,

ln~L/a!, t@
L

c~v !
.

~27!

Similarly, we can study the fluctuations in the orde
parameter fielddu(x,t)5u(x,t)2ud . Using Eqs.~7! and
~9!, we find

^du~x,t !2&5
D~v !ud

2~v !

pc~v !
E

p/L

p/a

dk k@12e22c(v)ukut#

5
pD~v !ud

2~v !

2c~v !a2 S 12
a2

2p2c2~v !t2D ~28!

for t@a/c(v).
The magnitude of the fluctuations of the contact li

width

D~v !5
D~v !

pc~v !
~29!

and, correspondingly, that of the order parameter

s~v !5
pD~v !ud

2~v !

2c~v !a2 , ~30!

e

1-5
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are thus both velocity-dependent. Again, we expect this
pendence to be different for the two cases.

A. Blake approach

In this case, we havemh!ud , which together with Eqs
~12!, ~15!, ~25!, ~29!, and~30! yield

D l~v !5S m2g2a2

2pcl0
2 D 1

~v/cl0!~122v/cl0!
~31!

and

s l~v !5S pm2g2ue
2

4cl0
2 D 1

~v/cl0!
. ~32!

FIG. 6. The reduced widthAl5D l /(m2g2a2/2pcl0
2 ) as a func-

tion of the dimensionless velocityVl5v/cl0 for Blake mechanism
@Eq. ~31!#. It is symmetric with respect toVl5
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The above equations are plotted in Figs. 6 and 7. Figur
shows that the width of the contact line is a symmetric fun
tion of velocity in this picture, while Fig. 7 denotes that th
order-parameter fluctuations decrease monotonically w
velocity. Note also that these fluctuations remain finite at
transition point, which is not typical of second-order pha
transitions.

B. de Gennes approach

Taking the opposite limitmh@ud in Eq. ~25!, together
with Eqs.~13!, ~17!, ~29!, and~30!, we obtain

FIG. 7. The reduced order-parameter fluctuationsBl

5s l /(pm2g2ue
2/4cl0

2 ) as a function of the dimensionless veloci
Vl5v/cl0 for the Blake mechanism@Eq. ~32!#. It is a monotonically
decreasing function of velocity. Note the unusual feature that
order-parameter fluctuationsremain finite at the transition point,
unlike traditional second-order phase transitions.
Dh~v !5S g2a2ue
2

6ph2l 2ch0
2 D H @~2n2 iA12n2!1/31~2n1 iA12n2!1/3#2

n@~2n2 iA12n2!1/31~2n1 iA12n2!1/32n#
J ~33!

and

sh~v !5S pg2ue
4

36h2l 2ch0
2 D H @~2n2 iA12n2!1/31~2n1 iA12n2!1/3#4

n@~2n2 iA12n2!1/31~2n1 iA12n2!1/32n#
J . ~34!
ha-
for

ct
ion
be
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s

i-
a
-

al
The above equations are plotted in Figs. 8 and 9. Figur
shows that the width of the contact line is not a symme
function of velocity in this case. Moreover, the orde
parameter fluctuations do not decrease monotonically w
velocity as shown in Fig. 9. Unlike in the previous cas
these fluctuations diverge at the transition point, which
again not typical of first-order phase transitions.

VII. DISCUSSION

Because of their anomalous elasticity, contact lines re
to their equilibrium from an initially distorted configuratio
with a characteristic inverse decay timet21(k)5c(v)uku for
eachk mode. Thev dependence of the characteristic veloc
8
c

th
,
s

x

c(v) is shown to depend crucially on the dissipation mec
nism, and it can thus be used as an experimental probe
the dominant dissipation mechanism.

A typical experiment for such investigations is dire
monitoring of the contact line shape during the relaxat
process. If the initial distortion of the contact line can
made periodic in a controlled way, like in the experiment
Ondarcuhu and Veyssie@11#, one can directly map outc(v)
and hence determine the dissipation mechanism from itv
dependence.

Another possibility is to have relaxation from random in
tial distortions, which will be the case when we pull out
naturally rough plate from the liquid. Monitoring the dynam
ics of the contact line in this case will provide statistic
1-6



n
S

or
ra
io
r-

e
ri
n
so
r
e
e

of
am-
mi-

e

at
his
nal

e.
-

te

s.

DISSIPATION IN DYNAMICS OF A MOVING CONTACT LINE PHYSICAL REVIEW E64 031601
information about the relaxation process, from which o
can hope to deduce the relevant features discussed in
VI.

We finally note that this linear theory is not sufficient f
a complete understanding of the Landau-Levich phase t
sition, and it breaks down upon approaching the transit
point. This breakdown is particularly manifest in the dive
gence that we encountered in the width of the contact lin
the transition point. To be able to have a complete desc
tion, one should keep the relevant nonlinear terms that ca
calculated by extending the method of this paper, and re
to perturbative renormalization-group approaches for the
sulting nonlinear stochastic equation. We have perform
these studies, and the corresponding results will app
elsewhere@15#.

FIG. 8. The reduced widthAh5Dh /(g2a2ue
2/18ph2l 2ch0

2 ) as a
function of the dimensionless velocityVh5v/ch0 for the de Gennes
mechanism@Eq. ~33!#. Note the asymmetry of the plot in this cas
c

t.
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,
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ec.
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n
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rt
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In conclusion, we have studied the relaxation dynamics
the contact lines, and suggested that monitoring this dyn
ics can provide an experimental probe for the debated do
nant dissipation mechanism.
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FIG. 9. The reduced order-parameter fluctuationsBh

5sh /(pg2ue
4/36h2l 2ch0

2 ) as a function of the dimensionless ve
locity Vh5v/ch0 for the de Gennes mechanism@Eq. ~34!#. In this
case, it isnot a monotonically decreasing function of velocity. No
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