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Dissipation in dynamics of a moving contact line
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The dynamics of the deformations of a moving contact line is studied assuming two different dissipation
mechanisms. It is shown that the characteristic relaxation time for a deformation of wavelergkh & a
contact line moving with velocity is given asr~1(k)=c(v)|k|. The velocity dependence ofv) is shown
to depend drastically on the dissipation mechanism: we dind =c(v =0)—2v for the case in which the
dynamics is governed by microscopic jumps of single molecules at théBtgke mechanism and c(v)
=c(v=0)—4v when viscous hydrodynamic losses inside the moving liquid wedge domidat&ennes
mechanism We thus suggest that the debated dominant dissipation mechanism can be experimentally deter-
mined using relaxation measurements similar to the Ondarcuhu-Veyssie expefim@darcuhu and M.
Veyssie, Nature352, 418 (1991)].
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[. INTRODUCTION nant mechanism in this regime.
A classic example of this corresponds to wetting of a plate

Spreading of a liquid on a solid surface usually involves athat is vertically withdrawn from a liquid at a constant ve-
rather complex dynamical behavior, which is determined bylocity —v, which was first studied by Landau and Levich for
a subtle competition between the mutual interfacial energetcomplete wettind6]. In the case of partial wetting that was
ics of the coexisting phasgshe solid, the liquid, and the studied by de Gennelb,7], a steady state is achieved in
corresponding equilibrium vapprdissipation processes, and which the liquid will partially wet the plate with a nonvan-
geometrical or chemical irregularities of the solid surfiite  ishing dynamic contact anglg,(v) only for pull-out veloci-
Interestingly, this dynamics can be effectively studied inties less than a certain critical valug. The dynamic contact
terms of the dynamics of theontact line which is the com- angle decreases with increasimguntil at the critical veloc-
mon borderline between the three phases, by correctly takingy the system undergoes a dynamical phase transition in
into account the physical processes in the vicinity of it. which a macroscopic Landau-Levich liquid film, formally

One of the key issues about this dynamics that has resorresponding to a vanishingy, will remain on the plate.
mained a subject of controversy is dissipation. There are two Since the onset of leaving a film occurs at small values of
rival theories in the literature, each depicting a differentcontact angle, one can imagine that the two different dissi-
physical picture for the dominant dissipation mechanism inpation mechanisms would lead to conflicting predictions
the dynamics of partial wettin®]. The first approach, which about the transition. In particular, in Blake’s picture the “or-
is based on the idea of Yarnold and Mag8hand was later der parameter” for the transitiofy; would vanish continu-
developed into a quantitative theory by Blake and co-ously asv approachesy., which makes it look like a
workers[4], emphasizes the role of microscopic jumps ofsecond-order phase transition. On the contrary, de Gennes
single moleculegfrom the liquid into the vapgrin the im-  predicts a jump in the order parameter fregy /3 to zero at
mediate vicinity of the contact line. The other approachthe transition, which is the signature of a first-order phase
which was developed by de Gennes and co-work&rS], transition[2,5]. This drastic difference in the predictions of
asserts that for small values of contact angle the dissipatiothe two theories can provide a reliable venue for testing
is dominated by viscous hydrodynamic losses inside thehem. However, such experiments have so far proven to be
moving liquid wedge. inconclusive due to the usual difficulties of tuning into a

For a partially wetting fluid on sufficiently smooth sub- critical point in the presence of disordgs].
strates, a contact line at equilibrium has a well-defined con- Another notable feature of contact lines is their anoma-
tact angleé, that is determined by the solid-vapggy, and  lous elasticity as noticed by Joanny and de Gerl@ésFor
the solid-liquid g interfacial energies, and the liquid sur- length scales below the capillary lengtivhich is of the or-
face tension y through Young's relation: ysy—7vys.  der of 3 mm for water at room temperatyra contact line
=y cosf,. For a moving contact line, however, the value of deformation of wave vectok, denoted as(k) in Fourier
the so-called dynamic contact anglg changes as a function space, will distort the surface of the liquid over a distance
of velocity: 64> 6, for an advancing contact line anl |k| ~1. Assuming that the surface deforms instantaneously in
< 6, for a receding one. Since the discrepancy between theesponse to the contact line, the elastic energy cost for the
two dissipation mechanisms appears for small contact angleteformation can be calculated from the surface tension en-
[2], one can expect that receding contact lines are in fact vergrgy stored in the distorted area, and is thus proportional to
good candidates for experimental determination of the domitk|, namely[9]
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The anomalous elasticity leads to interesting equilibrium
dynamics, corresponding to when the contact line is per-
turbed from its static position, as studied by de Gernié$
BalancingdE /dt and the dissipation, which he assumes for
small contact angles is dominated by the hydrodynamic dis-
sipation in the liquid nearby the contact line, he finds that
each deformation mode relaxes to equilibrium with a char-
acteristic inverse decay time (k) =cq|k|, in which ¢y A —
=y63(37/), wherey is the viscosity of the liquid and’ is ¥E \ Y
a logarithmic factor of order unity10]. The relaxation is \
thus characterized by a linear dispersion relation, which im-
plies that a deformation in the contact line will decay and FIG. 1. The schematics of the system.
propagate at a constant velocity, as opposed to systems
with normal line tension elasticity, where the decay and thejissipation for the deforming contact line within the two dif-
propagation are governed by diffusion. This behavior haserent scenarios.
been observed, and the linear dispersion relation has been
precisely tested, in a very interesting experiment by Ondar-
cuhu and Veyssigl1]. A. Blake approach

Here we study the dynamics of the deformations of a The physical process that is involved in causing dissipa-
moving contact line for the two different dissipation mecha-tion in Blake’s picture, i.e., molecular jumps near the contact
nisms. In particular, we focus on the sizeable regime wheréine, islocal in nature[4]. Therefore, in any small neighbor-
the contact line is moving, i.e., it is away from the depinninghood the amount of dissipation is completely determined by
transition[12], but still not too close to the onset of leaving the local value of the contact line velocity, while all the
a film. We show that in this regime, the characteristic relax-molecular details of the dissipation is encoded in an effective
ation time for ak-mode deformation is given as (k) friction coefficienty~ 1. The overall dissipation can then be
=c(v)|k|. The velocity dependence ofv) is shown to de-  written as
pend drastically on the dissipation mechanism: we find
c(v)=c(v=0)—2v in Blake’s scheme, whereas in de
Gennes’ picturec(v) might be rather well represented by
c(v)=c(v=0)—4v. We thus suggest that monitoring the
deformation dynamics in this regime, along the lines of th
Ondarcuhu-Veyssie experimeftl], can provide a more
practical probe for the experimental determination of the de
bated dominant dissipation mechanism.

The rest of the paper is organized as follows. In Sec. I, 3
we discuss the two different dissipation mechanisms and de- _ kLex;{ _ ﬂ) &)
rive expressions for the corresponding energy dissipation K kgT kgT)’
rates. These expressions are then used in Sec. lll to derive

the force balance, and thus the governing dynamical equag \yhich wis an activation energy for molecular hopping,
tion. The velocity dependence of the dynamic contact angle; he distance between hopping sitksis a characteristic
and a characteristic velocity are studied in Secs. IV and V‘attempt” rate, andkgT is the thermal energy.

correspondingly. While Sec. VI discusses the effects of sur-

face disorder, we conclude with some discussions in Sec.
VII. B. de Gennes approach

X

H:é%fdﬂv+&M&UF. )

€n the limit of relatively small contact angles, which is rel-
evant for our receding contact lines, the inverse friction co-
efficient (or mobility) can be calculated 4£]

We now focus on the contribution of dissipation that
Il DISSIPATION comes from t_he viscous losses iq the hydrodynamic flows
inside the liquid wedggl,5]. For a slightly deformed contact
Let us assume that the contact line is directed on averagee, we assume that the dissipation can be approximated by
along thex axis, and is moving in the direction with an  the sum of contributions from wedge-shaped slices with lo-
average velocity, which we assume to be positive corre- cal contact angle®(x,t), as shown in Fig. 1. This is a rea-
sponding to receding contact lines, as in Fig. 1. We can desonable approximation because most of the dissipation is
scribe the position of the contact line along thaxis for any  taking place in the singular flows near the tip of the wedge
givenx andt with the functiony(x,t) =vt+h(x,t). We fur-  [1,5,10. Using the result for the dissipation in a perfect
ther assume that the deformatibfx,t) is only a relatively =~ wedge, which is based on the lubrication approximation
small perturbation. We can now try to evaluate the overal[1,13], we can calculate the total dissipation[4§)]
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with 64(v) to be found by inverting Eq:8). The correspond-

7
thgf dx XD [v+ah(x,1)]%, (4 ing form of the dynamical equation in real space can be
' found by Fourier transformation as
in which /= In(drax/dmin) With da given by the size of the , ,
liquid drop andd,,;, being a microscopic length scale. The dh(x t)=—C(v)f d_X h(x".1) (11)
inverse dependence ahsuggests that for sufficiently small e T (x—x")2

contact angles the hydrodynamic loss is to be domih2jt
which reflects the nonlocality of the dynamics.

Ill. FORCE BALANCE AND DYNAMICAL EQUATION Relaxation of the contact line’s shape while it is moving

thus takes place with the same dispersion relatioh(k)

To find the governing dynamical equation in the long-time~ k| as a contact line at rest, although the corresponding
limit, we should balance the total friction force obtained ascharacteristic velocity tv) shows a strong dependence on
O(P+Pp)/69h(x,t) with the interfacial forceycosé(xt)  the contact line velocity.

—(vsv— ¥sD) = Y[ cosé(xt)—cosb,] at each point along the

cpnt.actlline. Note t_hat in this section, we are t:_;\king both IV. CONTACT-ANGLE —VELOCITY RELATION
dissipation mechanisms into account. In the limit of small
contact angles, we find There can be two types of experiments on a moving con-

tact line depending on how we prepare it. We can fix a value
for the contact angle that is different from,, and let it
move with an adjusted velocity when it reaches a steady
state. This can be achieved, for example, by adding or re-
To proceed from here, we need to relate the contact angl@oving some volume of liquid through a syringe that is in-
6(x,t) to the contact line profilé(x,t), which can be done serted in a liquid drop at equilibrium. On the contrary, we
through solving for the surface profile of the liquid drop. Onecan fix the velocity and let the contact angle adjust itself in a
can show that the surface profitéx,y) near the contact line Steady state. This will be the case, for example, when a plate
can be found as a solution of the Laplace equatigh ( IS Withdrawn vertically fr?m a Ilqwd"at a constant velocity.
+37)z(x,y) =0, so as to minimize the surface area. The so- Depending on which “ensemble” we are using, we will

; (i o _ have a fixed value fov or 64, and we should then use Eq.
lution that satisfies the bound ditiafx,h(x,t))=0 o .
rlé;%r;[g]a satisfies the boundary conditiatx,n(x.1)) (8) (that relates the velocity and the dynamic contact angle

to determine the conjugate parameter. The term “ensemble”
dk _ is in fact quite appropriate to use here because the(tme
y—fzh(k,t)e"‘x'k'y}, (6)  chanically conjugate quantities are, in fact, velocity and
force, which is determined solely by the contact angle. What
we have is then either a “constant velocity” or a “constant
force” experiment. It is interesting to note that in nonequi-
librium systems, in general, different ensembles may not
necessarily lead to the same regaH].
In this work, we are mostly interested in constant velocity
) experiments, and thus we will treatas a fixed and given
parameter below unless otherwise specified. We will exam-
ine Eqg. (8) in the limiting cases corresponding to the two
different dissipation mechanisms and compare their predic-
tions.

1 35/

Y
2 a0y [T ahaD1= 5l oG- 0(x,0%. (5

Z(X,y)= 04

from which we obtain

az(X,y)
o(x,t)= T|y=h(x,t): 04

1+I%|k|h(kt)eikx
27 ’

to the leading ordef9].
To the zeroth order, Ed5) gives the relation between the
average dynamic contact angle and the velocity as

04( 05— 63)
1+ 64/(Bnul)’

(8) A. Blake approach

The behavior in this regime can be extracted from By.
This relation will be used below to study the onset of theby taking the limitu »<#64. Inverting the resulting equation
transition of the moving liquid drop to a Landau-Levich film. yields
The dynamical equatiofEqg. (5)], which governs the dy-

_ Y
v 67/

namics of the deformation field, can now be written in the b4(v) _ /l_ 2_” (12
linear approximation as Oe | Cio’
ath(k,t)=—c(v)[klh(k,1) (9 in which ¢;o=py62. Note that this holds only fos<c,o/2,
) ) while 84=0 identically forv>c,y/2. This function is plotted
in Fourier space, where in Fig. 2.
, As can be readily seen from Fig. 2, increasingvould
pyO3(v)—3nu/v lead to d : | i itical veloci
c(v)= d « (10 ead to decreasing values of; until at a critical velocity
3pusl +64(v) v1c=Co/2 it finally vanishes continuously. A vanishing con-
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FIG. 2. The reduced order parameter (64/6,), as a function FIG. 3. The reduced order parameligy=(64/6.)y, as a func-

of the dimensionless velocity,=v/c,, for Blake mechanisniEqg. tion of the dimensionless velocity,=v/cy for the de Gennes
(12)]. The dynamical phase transition\4t,= 1/2 is predicted to be mechanism[Eq. (13)]. The dynamical phase transition &,
of second order in this picture. =1/(34/3)=0.192 is predicted to be of first order in this picture.

tact angle presumably corresponds to formation of a liqui
film, a so-called Landau-Levich film. The value of the dy-
namic contact anglé, serves as the order parameter for this
dynamical phase transition, whileis the tuning parameter.
The continuous vanishing of the order parameter causes the ) ) ) ) ) )
phase transition to be classified as second order. As in thote that in this approacb(v) is strictly linear inv all the
general theory of critical phenomena, a mean-field exponer#ay, and it vanishes at the transition point, as plotted in Fig.
B=1% is characterizing the vanishing of the order parametef-

in terms of the tuning parameter.

c1nserting the form offy(v) from Eq.(12) yields

C|(U):C|0_21}. (15)

B. de Gennes approach
B. de Gennes approach in th e limit of Ea.(10) will be simoli
T . n the opposite limit ofw 7> 64, EQ. will be simpli-
In the opposite limit ofu > 64, only the hydrodynamic PP kn>6q. Q. (10 P

e ; fi
contribution survives, and E@8) leads to led as
04v) 1 cy(6)= 200 39—3—@ (16)
R AT [(—v—iVI=2) B+ (= p+i 11219, h 2 \°@ "6

ee |h_ﬁ
(13 Putting in 64(v) from Eqg. (13) leads to
in which v=33v/cpg andcyg=y63/(37/) .
The above formula, which holds only for<cy,/(3/3), _ Cho : 13 , 13

has two branches and only the one that recodg{6)= 6, is (V)= ﬁ[(_ v=iN1I= )T (m et iyI= ) ),
acceptable as plotted in Fig. 3. While @t cp/(31/3) we (17)
find 6= 6.//3, we expect to havéy=0 for higher veloci-
tieSv>Cho/(3j\/§)- Therefore, the order paramety expe-  One can again check from this equation tbéat) vanishes at
riences a finite jump at the transition velocity,. the transition. The above equation is plotted in Fig. 5.
=cpo/(34/3), which is the hallmark of a first-order phase  The characteristic velocity can be well approximated by

transition. the linear expression
V. CHARACTERISTIC VELOCITY lol}
Using Eq.(10) and 64(v) that we have found in the pre- !
ceding section for the two different cases, we can extract the 0.8
v dependence of the characteristic velocity.
0.6
A. Blake approach
We can simplify Eq(10) by taking the limitun<6y4, as ot
0.2
04
ci(0)=Cio (14 v
O 0.1 0.2 0.3 0.4 0.5 *

FIG. 4. The reduced characteristic velod@y=c, /c,y as a func-

tion of the dimensionless velocity,=v/c,, for Blake mechanism

INote that the expression in E(L3) is real, and the is retained  [Eq.(15)]. The slope of the curve is 2 all the way to the transition
only to keep the appearance of the formula simpler. point where the characteristic velocity vanishes.
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Cn to the leading order. Note that this is a good approximation
. provided we are well away from the depinning transition,
and the contact line is moving fast enough9,12,18.
0.8 Assuming that the surface disorder has short-range corre-
o lations with a Gaussian distribution described by
0.4 (9(x,))=0,
0.2 (g yg(x'y"))=g?a’s(x—x")s(y-y"), (23
Vi we can deduce the distribution of the noise as
0.05 0.1 0.15 0.2
FIG. 5. The reduced characteristic velociBy=c,/c,, as a (m(x,1))=0,

function of the dimensionless velocit},=uv/cy for the de Gennes
mechanisniEq. (17)]. The slope of the curve is nearly4 until a
square-root singularity sets in near the transition point where th@vhere
characteristic velocity vanishes.

(p(x, 1) p(x",t")y=2D(v)S(x—x")8(t—t"), (24

2.2 2
_ga mbg(v)
Ch(v)=Cno—4v (18 D(v)= 2v \ O4(v)+3yu/ |’ 29
for a wide range of, except very neat,,/(3y3), where it N the presence of the noise, the contact line undergoes dy-
experiences a square-root singular behavior as namical fluctuations. These fluctuations can best be charac-
terized by the width of the contact line, which is defined as
1/2
(0)=Coo| V2| = | 43| e W2Lt1tht2 26
Ch(v)= b —_— =_
h ho 3\/§ Cho 3\/§ Cho ( , ) L X< (X, ) > ( )
1 v 32 Using Eq.(9) with the noise term, we can calculate the width
+0 33 : (190 of the contact line as
. . _ 2 _ D() [~ladk — 2¢(0) K|t
It is interesting to note that although both approaches predict WALt = mc(v) W/L?[l_e ]
a sizeable linear regime far(v), as manifest in Eqs(15)
and(18), the corresponding slopes are predicted differently. a L
In[c(v)t/a], —<t<—,
_ D(v) c) ' cv)
VI. SURFACE DISORDER - mc(v)
. : o In(L/a), t> :
In most practical cases, the dynamics of a contact line is c(v)

affected by the defects and heterogeneities in the substrate, in 27)
addition to dissipation and elasticity that we have considered

so far. If the interfacial energieysy and ys_ are space- Similarly, we can study the fluctuations in the order-
dependent with the corresponding averages b&gg and parameter fields6(x,t) = 6(x,t)— 64. Using Egs.(7) and
Vs, a displacemendy(x,t) of the contact line is going to  (9), we find

lead to a change in energy as D(v) 63 y
2y — —dU)J'w 2 _ a—2c(v) |kt
(86(x,1)%) 70(0) ﬁ/Ldk Kl-e ]
oE =f dx g(x,vt+h(x,t))dy(x,t), (20
‘ D) d5) (| a? ) 8
= 2 T 5. 22 2
where 2c(v)a 2m“c4(v)t
L for t>alc(v).
g(x,¥)=vsv(X,¥Y) — ysL(X,¥) — (ysv— vsL). (21 The magnitude of the fluctuations of the contact line
width
Incorporating this contribution in the force balance leads to D(v)
an extra force terng(x,vt) on the right-hand side of E5), Alv)= ——= (29)
and thus a noise term on the right-hand side of @4) of 7C(v)
the form and, correspondingly, that of the order parameter
[ mb 7D (v) 63(v)
7n(X,t)= 0d+377:“/) g(x,vt), (22 o(v)= W—, (30)
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Ay B,
100 100
60 60
40 40
20 20
0.1 0.2 0.3 0.4 05 0.1 0.2 0.3 0.4 TERE
FIG. 6. The reduced width = A, /(u?g?a®/2mc?y) as a func- FIG. 7. The reduced order-parameter fluctuatiors;
tion of the dimensionless velocity,=v/c,, for Blake mechanism =o, /(w,uzgzef)/Ac'zo) as a function of the dimensionless velocity
[Eq. (3D)]. It is symmetric with respect tb/,= %. V,=v/c|q for the Blake mechanisiEq. (32)]. It is a monotonically

decreasing function of velocity. Note the unusual feature that the
are thus both velocity-dependent. Again, we expect this deerder-parameter fluctuationemain finiteat the transition point,

pendence to be different for the two cases. unlike traditional second-order phase transitions.
A. Blake approach The above equations are plotted in Figs. 6 and 7. Figure 6
In this case, we havg < 6,4, which together with Egs. shows that the width of the contact line is a symmetric func-
(12), (15), (25) '(29) and (30) yiéld tion of velocity in this picture, while Fig. 7 denotes that the
T order-parameter fluctuations decrease monotonically with
w2g2a? 1 velocity. Note also that these fluctuations remain finite at the
A(v)= — (31))  transition point, which is not typical of second-order phase
2mcfy | (v/Ci0)(1=2v/Cio) transitions.
and
B. de Gennes approach
W/ngzﬂg 1 . o .
a(v) > ] . (32 Taking the opposite limifw 7> 64 in Eq. (25), together
achy | (vlcio) with Egs. (13), (17), (29), and(30), we obtain
|
o) 9%a?63 [(—v—iV1= )Y+ (—v+iV1- 22132 @3
v =
" emn2 2| | vl (—v—i V1 D (— i1 92 )
and
o) 72 0q [(—v—iV1= 2D+ (—p+i1- 12 -
onhlv)= .
" 3602 2Ry | vl (— v iI= D) B (= v+ i1 12— ]

The above equations are plotted in Figs. 8 and 9. Figure 8(v) is shown to depend crucially on the dissipation mecha-
shows that the width of the contact line is not a symmetricnism, and it can thus be used as an experimental probe for
function of velocity in this case. Moreover, the order- the dominant dissipation mechanism.

parameter fluctuations do not decrease monotonically with A typical experiment for such investigations is direct
velocity as shown in Fig. 9. Unlike in the previous case,monitoring of the contact line shape during the relaxation
these fluctuations diverge at the transition point, which isprocess. If the initial distortion of the contact line can be

again not typical of first-order phase transitions. made periodic in a controlled way, like in the experiment of
Ondarcuhu and Veyss[d.1], one can directly map oud(v)
VII. DISCUSSION and hence determine the dissipation mechanism frora its
dependence.

Because of their anomalous elasticity, contact lines relax Another possibility is to have relaxation from random ini-
to their equilibrium from an initially distorted configuration tial distortions, which will be the case when we pull out a
with a characteristic inverse decay time'(k)=c(v)|k| for  naturally rough plate from the liquid. Monitoring the dynam-
eachk mode. They dependence of the characteristic velocity ics of the contact line in this case will provide statistical
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An By
100 100
80 80
60 60
40 40
20 20
0.05 0.1 0.15 0.2 Vh 0.05 0.1 0.15 0.2 Vh
FIG. 8. The reduced width,= A /(g?a262/187 7?/%c,) as a FIG. 9. The reduced order-parameter fluctuatiorss,

function of the dimensionless velocit§,=v/cy, for the de Gennes = oh/(ngag/seWZ/zcﬁo) as a function of the dimensionless ve-
mechanisnjEq. (33)]. Note the asymmetry of the plot in this case. locity V,,=v/cyo for the de Gennes mechaniqiig. (34)]. In this
case, it isnota monotonically decreasing function of velocity. Note
information about the relaxation process, from which onethe unusual feature that the order parameter fluctuatioresgeat
can hope to deduce the relevant features discussed in Sehe transition point, unlike traditional first-order phase transitions.

VI. . . . .

We finally note that this linear theory is not sufficient for i In Cotnd;“'ff'on’ we gave Stu?'eddt:]hi rela>§?t|9n d%narg'cs Of_
a complete understanding of the Landau-Levich phase tran- € contact ines, and suggested that monitoring this dynam
sition, and it breaks down upon approaching the transitioro> & pTOV"?'e an exper!mental probe for the debated domi-
point. This breakdown is particularly manifest in the diver- hant dissipation mechanism.
gence that we encountered in the width of the contact line at
the transition point. To be able to have a complete descrip-
tion, one should keep the relevant nonlinear terms that can be We are grateful to J. Bico, P. G. de Gennes, and D.rue
calculated by extending the method of this paper, and resofbr invaluable discussions and comments. One ofRI$)
to perturbative renormalization-group approaches for the rewould like to thank the group of Professor de Gennes at
sulting nonlinear stochastic equation. We have performedollege de France for their hospitality and support during his
these studies, and the corresponding results will appeasisit. This research was supported in part by the National
elsewherd 15]. Science Foundation under Grant No. DMR-98-05883G)).
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